Mn(III)-Catalyzed Synthesis of Pyrroles from Vinyl Azides and 1,3-Dicarbonyl Compounds

Yi-Feng Wang, Kah Kah Toh, Shunsuke Chiba,* and Koichi Narasaka*

*Di*V*ision of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological Uni*V*ersity, Singapore 637371, Singapore*

shunsuke@ntu.edu.sg; narasaka@ntu.edu.sg

Received September 10, 2008

ABSTRACT

Polysubstituted *N***-H pyrroles with a wide variety of substituents were prepared from vinyl azides and 1,3-dicarbonyl compounds by using Mn(III) complexes as catalysts.**

Pyrroles are one of the most prevalent heterocyclic compounds, being present as the basic cores in many natural products, $¹$ potent pharmaceutical compounds, $²$ and various</sup></sup> kinds of functional materials. 3 Despite numerous diverse approaches toward the synthesis of pyrroles developed so far,⁴ it is still challenging to prepare polysubstituted pyrroles with various substituents from readily available building

10.1021/ol802120u CCC: \$40.75 2008 American Chemical Society **Published on Web 10/09/2008**

blocks. Recently, we have reported a synthetic method to prepare pyrroles by Cu(II)-catalyzed reactions of vinyl azides and ethyl acetoacetate.⁵ In this reaction, however, introduction of an alkoxycarbonyl group at the α -position of vinyl azides is indispensable to realize high yield. It is probably because this transformation proceeds by 1,4-anionic addition of ethyl acetoacetate to vinyl azides.⁶ Furthermore, 1,3diketones such as acetylacetone could not be utilized for this (1) For recent reviews, see: (a) Walsh, C. T.; Garneau-Tsodikova, S.; Cu(II)-catalyzed method. Based on these backgrounds, we

Howard-Jones, A. R. *Nat. Prod. Rep.* **2006**, *23*, 517. (b) Fu¨rstner, A. *Angew. Chem., Int. Ed.* **2003**, *42*, 3582. (c) Hoffmann, H.; Lindel, T. *Synthesis* **2003**, 1753.

^{(2) (}a) Hall, A.; Atkinson, S.; Brown, S. H.; Chessell, I. P.; Chowdhury, A.; Giblin, G. M. P.; Goldsmith, P.; Healy, M. P.; Jandu, K. S.; Johnson, M. R.; Michel, A. D.; Naylor, A.; Sweeting, J. A. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 1200. (b) Bellina, F.; Rossi, R. *Tetrahedron* **2006**, *62*, 7213. (c) Micheli, F.; Di Fabio, R.; Benedetti, R.; Capelli, A. M.; Cavallini, P.; Cavanni, P.; Davalli, S.; Donati, D.; Feriani, A.; Gehanne, S.; Hamdan, M.; Maffeis, M.; Sabbatini, F. M.; Tranquillini, M. E.; Viziano, M. V. A. *Farmaco* **2004**, *59*, 175. (d) Huffman, J. W. *Curr. Med. Chem.* **1999**, *6*, 705. (e) Roth, B. D.; Blankley, C. J.; Chucholowski, A. W.; Ferguson, E.; Hoefle, M. L.; Ortwine, D. F.; Newton, R. S.; Sekerke, C. S.; Sliskovic, D. R.; Stratton, C. D.; Wilson, M. W. *J. Med. Chem.* **1991**, *34*, 357.

^{(3) (}a) Plitt, P.; Gross, D. E.; Lynch, V. M.; Sessler, J. L. *Chem. Eur. J.* **2007**, *13*, 1374. (b) Zhao, W.; Carreira, E. M. *Chem. Eur. J.* **2006**, *12*, 7254. (c) Gale, P. A. *Acc. Chem. Res.* **2006**, *39*, 465. (d) Nadeau, J. M.; Swager, T. M. *Tetrahedron* **2004**, *60*, 7141. (e) Sessler, J. L.; Camiolo, S.; Gale, P. A. *Coord. Chem. Re*V*.* **²⁰⁰³**, *²⁴⁰*, 17. (f) Yoon, D. W.; Hwang, H.; Lee, C. H. *Angew. Chem., Int. Ed.* **2002**, *41*, 1757. (g) Seidel, D.; Lynch, V.; Sessler, J. L. *Angew. Chem., Int. Ed.* **2002**, *41*, 1422. (h) Miyaji, H.; Sato, W.; Sessler, J. L. *Angew. Chem., Int. Ed.* **2000**, *39*, 1777. (i) Depraetere, S.; Smet, M.; Dehaen, W. *Angew. Chem., Int. Ed.* **1999**, *38*, 3359.

⁽⁴⁾ For recent reports on the synthesis of polysubstituted pyrroles, see: (a) Cacchi, S.; Fabrizi, G.; Filisti, E. *Org. Lett.* **2008**, *10*, 2629. (b) St. Cyr, D. J.; Arndtsen, B. A. *J. Am. Chem. Soc.* **2007**, *129*, 12366. (c) Cadierno, V.; Gimeno, J.; Nebra, N. *Chem. Eur. J.* **2007**, *13*, 9973. (d) Su, S.; Porco, J. A., Jr. *J. Am. Chem. Soc.* **2007**, *129*, 7744. (e) Dong, H.; Shen, M.; Redford, J. E.; Stokes, B. J.; Pumphrey, A. L.; Driver, T. G. *Org. Lett.* **2007**, *9*, 5191. (f) Shindo, M.; Yoshimura, Y.; Hayashi, M.; Soejima, H.; Yoshikawa, T.; Matsumoto, K.; Shishido, K. *Org. Lett.* **2007**, *9*, 1963. (g) Rodrı´guez Rivero, M.; Buchwald, S. L. *Org. Lett.* **2007**, *9*, 973. (h) St. Cyr, D. J.; Martin, N.; Arndtsen, B. A. *Org. Lett.* **2007**, *9*, 449. (i) Martı´n, R.; Rodrı´guez Rivero, M.; Buchwald, S. L *Angew. Chem., Int. Ed.* **2006**, *45*, 7079. (j) Crawley, M. L.; Goljer, I.; Jenkins, D. J.; Mehlmann, J. F.; Nogle, L.; Dooley, R.; Mahaney, P. E. *Org. Lett.* **2006**, *8*, 5837. (k) Binder, J. T.; Kirsch, S. F. *Org. Lett.* **2006**, *8*, 2151. (l) Gorin, D. J.; Davis, N. R.; Toste, F. D. *J. Am. Chem. Soc.* **2005**, *127*, 11260. (m) Bharadwaj, A. R.; Scheidt, K. A. *Org. Lett.* **2004**, *6*, 2465. (n) Siriwardana, A. I.; Kathriarachchi, K. K. A. D. S.; Nakamura, I.; Gridnev, I. D.; Yamamoto, Y. *J. Am. Chem. Soc.* **2004**, *126*, 13898. (o) Dhawan, R.; Arndtsen, B. A. *J. Am. Chem. Soc.* **2004**, *126*, 468. (p) Kel'in, A. V.; Sromek, A. W.; Gevorgyan, V. *J. Am. Chem. Soc.* **2001**, *123*, 2074. (q) Boger, D. L.; Boyce, C. W.; Labroli, M. A.; Sehon, C. A.; Jin, Q. *J. Am. Chem. Soc.* **1999**, *121*, 54. (5) Chiba, S.; Wang, Y.-F.; Lapointe, G.; Narasaka, K. *Org. Lett.* **2008**,

¹⁰, 313.

have strived to develop a more general method for pyrrole synthesis by applying a radical mechanism. Herein, we report Mn(III)-catalyzed pyrrole formation from vinyl azides with a variety of substituents and various 1,3-dicarbonyl compounds such as β -keto esters and 1,3-diketones.

To achieve pyrrole formation from a wide range of vinyl azides, we turned our attention to a radical pathway in which α -carbonyl radicals generated from 1,3-dicarbonyl compounds add to vinyl azides to afford iminyl radicals.7 The resulting iminyl radicals would cyclize with an intramoelcular carbonyl moiety to give pyrroles.⁸

At first, a stoichiometric amount (1.5 equiv) of Mn(III) acetate, which has been widely used for oxidative radical formations from carbonyl compounds, $9,10$ was employed for the reaction of α -azidostyrene (1a) and ethyl acetoacetate $(2a)$ in some solvents under N_2 atmosphere. It was found that the reaction proceeds smoothly in MeOH 11 at 40 °C to give pyrrole **3aa** in 84% yield (Table 1, entry 1). Interest-

Table 1. Reaction of Vinyl Azide **1a** with Ethyl Acetoacetate 2a by the Use of $Mn(OAc)₃$ ²H₂O^{*a*}

ingly, even with the use of a catalytic amount (20 mol %) of Mn(III) acetate, pyrrole **3aa** was obtained in 90% yield (entry 2). Addition of acetic acid (2 equiv) accelerated the reaction and reduced the catalyst loading to 10 mol % (entry 3).

This catalytic reaction may be initiated by addition of Mn(III) enolate **I** to vinyl azide **1a** via a radical pathway,

(9) For reviews, see: (a) Melikyan, G. G. *Org. React.* **1997**, *49*, 427.

giving iminyl radical **II** with release of Mn(II) species and dinitrogen (Scheme 1). The resulting iminyl radical **II**

undergoes intramolecular additon to a carbonyl group to give alkoxyl radical **III**. Reduction of this alkoxyl radical **III** by Mn(II) species gives Mn(III) alkoxide **IV** (path a). Alternatively, reaction of iminyl radical **II** with Mn(II) species affords alkylideneaminomanganese(III) **V**, nucleophilic attack of which to a carbonyl group yields addition intermediate **IV** (path b).¹² Finally, protonation of **IV** with acetic acid followed by dehydration yields pyrrole **3aa** along with regeneration of Mn(III). Most of the reported radical reactions of 1,3-dicarbonyl compounds with alkenes using Mn(III) acetate are performed in a stoichiometric manner, although there are a few reports on catalytic usage of Mn(III) acetate in the presence of reoxidants.¹³⁻¹⁶ Thus, this catalytic pyrrole formation prompted us to investigate the further potential for a synthetic method.

Using Mn(III) acetate as a catalyst, we next examined the scope of this pyrrole formation. First, the reactions of various vinyl azides **1** with ethyl acetoacetate (**2a**) were examined as shown in Table 2. α -Aryl vinyl azides reacted smoothly to afford pyrroles $3aa-ia$ in good yield (entries $1-9$).

⁽⁶⁾ For an example, the reaction of α -azidostyrene (**1a**) with ethyl acetoacetate (**2a**) gave the corresponding pyrrole **3aa** in only 9% yield; see ref 5.

⁽⁷⁾ For prior studies on the iminyl radical formation from vinyl azides, see: (a) Montevecchi, P. C.; Navacchia, M. L.; Spagnolo, P. *J. Org. Chem.* **1997**, *62*, 5864. (b) Bamford, A. F.; Cook, M. D.; Roberts, B. P. *Tetrahedron Lett.* **1983**, *24*, 3779.

⁽⁸⁾ For reviews of the synthesis of aza-heterocycles using iminyl radicals, see: (a) Stella, L. In *Radicals in Organic Synthesis*; Renaud, P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim, 2001; Vol. 2, p 407. (b) Mikami, T., Narasaka, K. In *Ad*V*ances in Free Radical Chemistry*; Zard, S. Z., Ed.; JAI: Stamford, 1999; Vol. 2, p 45. (c) Fallis, A. G.; Brinza, I. M. *Tetrahedron* **1997**, *53*, 17543. (d) Zard, S. Z. *Synlett* **1996**, *n/a*, 1148.

⁽¹⁰⁾ The structure of Mn(III) acetate is actually an oxo-centered triangle of Mn(III) bridged by acetoxy ions. For the report on the crystal structure of anhydrous Mn(III) acetate, see: Hessel, L. W.; Romers, C. *Recl. Tra*V*. Chim. Pays-Bas* **1969**, *88*, 545.

⁽¹¹⁾ Other solvents such as DMF, CH₃CN, and EtOH were not so effective for this reaction.

⁽¹²⁾ For an example of addition of aminyl radicals to carbonyl groups, see: Kim, S.; Joe, G. H.; Do, J. Y. *J. Am. Chem. Soc.* **1993**, *115*, 3328.

⁽¹³⁾ For the catalytic radical reactions using the $Mn(II)/Co(II)/O₂$ redox system, see: (a) Kagayama, T.; Fuke, T.; Sakaguchi, S.; Ishii, Y. *Bull. Chem. Soc. Jpn.* **2005**, *78*, 1673. (b) Hirase, K.; Iwahama, T.; Sakaguchi, S.; Ishii, Y. *J. Org. Chem.* **2002**, *67*, 970. (c) Iwahama, T.; Sakaguchi, S.; Ishii, Y. *Chem. Commun.* **2000**, *n/a*, 2317.

⁽¹⁴⁾ For peroxidation of alkenes with Mn(III) acetate under oxygen atomsphere, see: (a) Asahi, K.; Nishino, H. *Tetrahedron* **2005**, *61*, 11107. (b) Rahman, M. T.; Nishino, H. *Tetrahedron* **2003**, *59*, 8383.

⁽¹⁵⁾ For the use of electrooxidation, see: (a) Shundo, R.; Nishiguchi,

I.; Matsubara, Y.; Hirashima, T. *Tetrahedron* **1991**, *47*, 831. (b) Coleman, J. P.; Hallcher, R. C.; McMackins, D. E.; Rogers, T. E.; Wagenknecht, J. H. *Tetrahedron* 1991, 47, 809. (c) Nédélec, J. Y.; Nohair, K. Synlett **1991**, 659.

Table 2. Mn(OAc)₃·2H₂O-Catalyzed Synthesis of Pyrroles 3 from Vinyl Azides 1 and Ethyl Acetoacetate (2a)^a

^a Reactions were performed in MeOH at 40 °C with 1.5 equiv of ethyl acetoacetate (**2a**) under N2 atomsphere. *^b* Isolated yield. *^c* Vinyl azide **1j** was recovered in 25% yield. *^d* Vinyl azide **1p** was recovered in 10% yield. *^e* Vinyl azide **1s** was recovered in 15% yield.

Relatively longer reaction time or higher catalyst loading was necessary in the cases of vinyl azides bearing electronrich aryl groups (entries 6-8). Trisubstituted vinyl azide β -methyl- α -azidostyrene (1i) also reacted with ethyl acetoacetate to give tetrasubstituted pyrrole **3ia** in good yield (entry 9). The reaction of α -pyrrolyl vinyl azide 1*j* proceeded to give the corresponding dipyrrole **3ja** in 68% yield in spite of the slower reaction rate (24 h) (entry 10). 1,4-Dipyrroylbenzene $3ka$ could be obtained in 48% yield¹⁷ by treatment of bis(α -azidovinyl)benzene **1k** with 40 mol % of Mn(III) acetate (entry 11). The reaction of α -alkyl vinyl azides with some functional groups also gave the corresponding pyrroles 3 la- q a in good yield (entries $12-17$). From 1-azidocyclooctene (**1p**), bicyclic pyrrole **3pa** was obtained in 60% yield (entry 16). Vinyl azide **1q** with a chiral polyol function prepared from D -glucal derivatives¹⁸ could be transformed to pyrrole **3qa** in 74% yield without cleavage of silyloxy

(17) The low yield of pyrrole **3ka** is probably due to instability of **3ka** in the present reaction conditions.

moieties by employing 40 mol % of Mn(III) acetate (entry 17). Vinyl azides having an ethoxycarbonyl group at the α -position could also be employed in this pyrrole synthesis (entries 18 and 19). In the case of the reaction of ethyl 2-azidoacrylate (**1r**), the use of only 5 mol % of Mn(III) acetate was sufficient to complete the reaction within 2 h, affording pyrrole **3ra** almost quantitatively (entry 18). Although tetrasubstituted pyrrole **3sa** were obtained in good yield, the reaction of β -aryl vinyl azides **1s** required a longer reaction time (24 h) even by the use of 20 mol % of Mn(III) acetate, probably due to steric hindrance (entry 19).

Next, the generality of 1,3-dicarbonyl compounds was examined using α -azidostyrene (**1a**) and ethyl 2-azidoacrylate $(1r)$ as shown in Table 3. By employing β -keto esters $2b-d$, phenyl, ethoxymethyl, and cyclopropyl groups were successfully installed at the C2-position of pyrroles **3** (entries $1-6$). A slow reaction rate was observed when acetylacetone (**2e**) was employed (entry 7), and the yield of the obtained pyrrole **3ae** was low (21%) along with recovery of **1a** (63%) even after 24 h. The formation of pyrrole **3ae**, however, encouraged us to improve the product yield by modification of Mn(III) complexes because the previous Cu(II)-catalyzed

⁽¹⁶⁾ For the use of sonochemical conditions, see: (a) Bosman, C.; D'Annibale, A.; Resta, S.; Trogolo, C. *Tetrahedron* **1994**, *50*, 13847. (b) Allegretti, M.; D'Annibale, A.; Trogolo, C. *Tetrahedron* **1993**, *49*, 10705.

⁽¹⁸⁾ Alonso-Cruz, C. R.; Kennedy, A. R.; Rodríguez, M. S.; Sua´rez, E. *Org. Lett.* **2003**, *5*, 3729.

Table 3. Mn(OAc)₃²H₂O-Catalyzed Synthesis of Pyrroles 3 from Vinyl Azides **1** and 1,3-Dicarbonyl Compounds **2***^a*

^a Reactions were performed in MeOH at 40 °C with 1.5 equiv of 1,3 dicarbonyl compounds under N2 atomsphere. *^b* Isolated yield. *^c* Vinyl azide **1a** was recovered in 63% yield.

reaction⁵ with any 1,3-diketone did not give the corresponding pyrrole at all.

Interestingly, when the reaction of acetylacetone (**2e**) with **1a** was tried using 20 mol % of Mn(III) tris(2-pyridinecarboxylate) [Mn(pic)₃],^{19,20} pyrrole **3ae** was afforded in 76% yield after 20 h (Table 4, entry 1).²¹ Treatment of some vinyl

^a Reactions were performed in MeOH at 40 °C using 20 mol % of $Mn(pic)$ ₃ with 1.5 equiv of 1,3-diketones under N₂ atomsphere. ^{*b*} Isolated yield. *^c* Vinyl azide **1i** was recovered in 21% yield. *^d* Vinyl azide **1a** was recovered in 17% yield.

azides **1e**, **1f**, **1i**, and **1n** with acetylacetone (**2e**) under the same reaction conditions led to the formation of pyrroles **3** in good to moderate yield (entries $2-5$). The reaction of unsymmetrical 1,3-diketone benzoylacetone (**2f**) with vinyl azide **1a** proceeded to afford pyrrole **3af** in 61% yield as a sole product via C-N bond formation with a less hindered acetyl group (entry 6).

In summary, a Mn(III)-catalyzed method has been developed for synthesis of tri- and tetrasubstituted *N*-H pyrroles from readily available vinyl azides and 1,3-dicarbonyl compounds. Further studies on the scope, mechanism, and synthetic applications of this reaction are in progress.

Acknowledgment. This work was supported by funding from Nanyang Technological University, Singapore Ministry of Education, and Science & Engineering Research Council (A*STAR Grant No. 082 101 0019).

Supporting Information Available: Experimental procedures and characterization of new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL802120U

⁽¹⁹⁾ Mn(III) tris(2-pyridinecarboxylate) has a monomeric octahedral structure; see: Figgis, B. N.; Raston, C. L.; Sharma, R. P.; White, A. H. *Aust. J. Chem.* **1978**, *31*, 2545.

⁽²⁰⁾ For the oxidative radical reaction by using Mn(III) tris(2-pyridinecarboxylate) as an oxidant, see: (a) Iwasawa, N.; Funahashi, M.; Hayakawa, S.; Ikeno, T.; Narasaka, K. *Bull. Chem. Soc. Jpn.* **1999**, *72*, 85. (b) Narasaka, K. *Pure Appl. Chem.* **1997**, *69*, 601. (c) Vo, N. H.; Snider, B. B. *J. Org. Chem.* **1994**, *59*, 5419. (d) Snider, B. B.; McCarthy, B. A. *J. Org. Chem.* **1993**, *58*, 6217, and references therein.

⁽²¹⁾ The reaction of vinyl azide **1a** with ethyl acetoacetate (**2a**) using 10 mol % of Mn(III) tris(2-pyridinecarboxylate) proceeded at 40 °C more slowly than using Mn(III) acetate, giving 28% yield of pyrrole **3aa** along with recovery of **1a** (55%) after 22 h.